A6 | Fatma Moalla: First Tunisian Woman to earn Math Ph.D. in France

Do Now: Pythagorean Theorem with AP Calculus BC

Fatma Moalla made extensive contributions to Finsler spaces. A Finsler space consists of manifolds whose length may be described by what is known as a Minkowski functional. Our goal is simple -- to understand the formula for the Minkowski functional:

$$
L(\gamma)=\int_{a}^{b} F(\gamma(x), \dot{\gamma}(x)) d t
$$

Minkowski Functional
We begin with something simpler: in the two problems below, find the distance between the two points, at first using subtraction, and then the distance formula.

Big Idea: Length of a Curve

We know how to find the length of a line, by using the distance formula to calculate the distance between its endpoints. But how can we find the length of a curve? Well, remember that a curve -when zoomed in -- is nothing but a line! Thus, we can simply use the pythagorean theorem, but modify it using calculus!

Now, simply integrate the hypotenuse from $x=a$ to $x=b$!

$$
\int_{a}^{b} \sqrt{d x^{2}+d y^{2}}
$$

Let's factor out $d x^{2}$:

$$
\int_{a}^{b} \sqrt{d x^{2}\left(1+\frac{d y^{2}}{d x^{2}}\right)}
$$

We can now pull out the $d x^{2}$ from the square root:

$$
\int_{a}^{b} d x \sqrt{1+\frac{d y^{2}}{d x^{2}}}
$$

And now, we are left with the formula for the length of a curve!

$$
\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \rightarrow \int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

The square root is no more than a function F, and what is it a function of? It is a function of the derivative of the curve $f^{\prime}(x)$! The derivative may also be written as $\dot{f}(x)$, where the dot on top of the f represents the first derivative. If we make these modifications, we see that the Minkowski functional is quite similar to the length of a curve!

$$
L(x)=\int_{a}^{b} F(\dot{f}(x)) d x \text { Length of Curve }
$$

$$
L(\gamma)=\int_{a}^{b} F(\gamma(x), \dot{\gamma}(x)) d t \text { Minkowski Functional }
$$

Use your newfound knowledge of the length of a curve to find the length of $y=x^{2}$ between two general points. Note that $\int \csc ^{3} x d x=\frac{-\cot x^{*} \csc x-\ln (|\cot x+\csc x|)}{2}+C$.

